Area and perimeter

1 Use the words to complete the sentences.

Area is the amount of space __inside_ a
two-dimensional shape. It can be measured in units such as
__cm² or _____²

______ is the distance ______ a two-dimensional shape. It can be measured in units such as ______ or _____ or _____

2 Work out the areas and perimeters of the shapes.

perimeter =
$$20$$
 cm perimeter = 20 cm area = 16 cm²

Work out the missing values.

area = 32 cm²

perimeter =
$$24$$
 cm

area =
$$\frac{96}{100}$$
 cm² perimeter = 40 cm

area =
$$\begin{bmatrix} 81 \\ \text{perimeter} = 36 \text{ m} \end{bmatrix}$$

4 Work out the areas and perimeters of the shapes.

area =
$$30$$
 cm²

perimeter = 22 cm

area =
$$29$$
 cm²
perimeter = 22 cm

Shape B

What do you notice?

If you start with a rectilinear shape, when you increase the area, the perimeter will increase.

Tommy

It depends on the shape.

Who do you agree with? ____Amir

Draw some examples to support your answer.

- Shape A has the largest perimeter possible.
- Shape B has the smallest perimeter possible.

Draw shapes A and B.

What do you notice?

Mr Jones has 50 m of fencing.

a) Draw an example of a shape he could make. Give units on your diagram.

- **b)** What is the greatest possible area of the enclosure?
- c) What is the smallest possible area of the enclosure?

24m2

156 m²

